Part 2

Part 3

Abstract

This paper explores the intersection of advanced neural information processing techniques and computational finance, with a particular focus on two innovative approaches presented at ICONIP 2024: the use of neural networks for estimating minimum-phase signals and the Style Miner framework for identifying stable risk factors through constrained reinforcement learning. We present detailed practical implementations that demonstrate how these theoretical concepts can be applied to real-world financial problems, from denoising financial time series to the dynamic selection of style factors for portfolio management.

  1. Introduction
    Modern computational finance requires increasingly sophisticated tools to manage the complexity and inherent noise in financial markets. Neural information processing techniques offer innovative solutions to problems traditionally addressed with classic statistical methods. In this paper, we explore two complementary approaches:
  • Minimum-phase signal processing: How the mathematical properties of minimum-phase signals can be leveraged to improve the analysis of financial time series.
  • Style Miner: A constrained reinforcement learning framework for the automatic identification of stable and significant risk factors.
  1. Theoretical Foundations
    2.1 Minimum-Phase Signals in Finance
    Minimum-phase signals have unique properties that make them particularly suitable for financial analysis:
    MINIMUM PHASE SIGNAL PROCESSOR FOR FINANCIAL TIME SERIES

    This module implements a comprehensive minimum-phase signal processing framework
    specifically designed for financial time series analysis. The minimum-phase
    transformation offers several advantages:
  2. Noise reduction while preserving causality
  3. Stable invertibility for signal reconstruction
  4. Unique phase-magnitude relationship for predictability

The implementation uses cepstral analysis and Hilbert transform techniques

to ensure mathematical rigor while maintaining computational efficiency.

“””

import numpy as np

import pandas as pd

from scipy import signal

from scipy.fft import fft, ifft

import matplotlib.pyplot as plt

class MinimumPhaseProcessor:

    “””

    Advanced processor for analyzing and transforming financial signals 

    into minimum-phase representations with enhanced stability properties

    “””

    def init(self, sampling_rate=1.0):

        “””

        Initialize the processor with configurable sampling parameters

        Args:

            sampling_rate (float): Data sampling frequency (default: 1.0 for daily data)

        “””

        self.sampling_rate = sampling_rate

    def to_minimum_phase(self, input_signal):

        “””

        Convert any signal to its minimum-phase equivalent using complex cepstrum

        This method implements the fundamental theorem that any signal can be

        decomposed into minimum-phase and all-pass components. We extract only

        the minimum-phase component for enhanced stability.

        Args:

            input_signal (np.array): Original time series data

        Returns:

            np.array: Minimum-phase transformed signal

        “””

        # Step 1: Compute FFT of the input signal

        spectrum = fft(input_signal)

        # Step 2: Calculate logarithm of magnitude (avoid log(0) with small epsilon)

        log_spectrum = np.log(np.abs(spectrum) + 1e-10)

        # Step 3: Compute complex cepstrum via inverse FFT

        cepstrum = ifft(log_spectrum).real

        # Step 4: Apply causal window to extract minimum-phase component

        # This is the key step that enforces minimum-phase property

        n = len(cepstrum)

        window = np.zeros(n)

        window[0] = 1  # DC component

        window[1:n//2] = 2  # Positive frequencies doubled

        window[n//2] = 1 if n % 2 == 0 else 2  # Nyquist frequency

        # Step 5: Reconstruct minimum-phase signal

        min_phase_cepstrum = cepstrum * window

        min_phase_spectrum = np.exp(fft(min_phase_cepstrum))

        min_phase_signal = ifft(min_phase_spectrum).real

        return min_phase_signal[:len(input_signal)]

    def extract_phase_from_magnitude(self, magnitude_response):

        “””

        Extract minimum-phase response from magnitude using Hilbert transform

        This implements the Hilbert transform relationship between log-magnitude

        and phase for minimum-phase systems, crucial for financial applications

        where we often only have magnitude information.

        Args:

            magnitude_response (np.array): Frequency domain magnitude

        Returns:

            np.array: Corresponding minimum-phase response

        “””

        # Apply logarithm to magnitude

        log_mag = np.log(magnitude_response + 1e-10)

        # Hilbert transform to obtain phase

        # Negative sign ensures causality

        phase = -signal.hilbert(log_mag).imag

        return phase

    def apply_to_financial_series(self, price_series, window_size=252):

        “””

        Apply minimum-phase processing to financial time series with rolling windows

        This method is specifically designed for financial data, using typical

        trading year windows (252 days) and computing stability metrics relevant

        for risk management and signal quality assessment.

        Args:

            price_series (pd.Series): Time series of asset prices with DatetimeIndex

            window_size (int): Rolling window size (default: 252 trading days)

        Returns:

            pd.DataFrame: Processed results with stability metrics

        “””

        results = []

        for i in range(window_size, len(price_series)):

            # Extract rolling window

            window_data = price_series[i-window_size:i]

            # Calculate log returns (standard in finance)

            returns = np.diff(np.log(window_data))

            # Convert to minimum-phase representation

            min_phase_returns = self.to_minimum_phase(returns)

            # Calculate stability improvement metric

            # Lower variance in minimum-phase domain indicates better stability

            stability_metric = np.var(min_phase_returns) / np.var(returns)

            results.append({

                ‘date’: price_series.index[i],

                ‘original_return’: returns[-1],

                ‘min_phase_return’: min_phase_returns[-1],

                ‘stability’: stability_metric

            })

        return pd.DataFrame(results)

CONCLUSION – MinimumPhaseProcessor Implementation:

This implementation provides a robust framework for applying minimum-phase

theory to financial time series. Key achievements:

  1. Numerical Stability: Use of epsilon values prevents computational issues
  2. Financial Relevance: Window sizes and metrics aligned with trading practices  
  3. Interpretability: Stability metric directly relates to risk reduction
  4. Efficiency: FFT-based implementation ensures O(n log n) complexity

The processor can be extended with additional features like:

  • Multi-resolution analysis for different time scales
  • Adaptive window sizing based on market volatility
  • Integration with risk management systems

Example usage demonstrating practical application

np.random.seed(42)

dates = pd.date_range(‘2020-01-01′, periods=1000, freq=’D’)

prices = 100 * np.exp(np.cumsum(np.random.normal(0.0005, 0.02, 1000)))

price_series = pd.Series(prices, index=dates)

Process the series

processor = MinimumPhaseProcessor()

results = processor.apply_to_financial_series(price_series)

print(“Minimum-phase stabilization statistics:”)

print(f”Average variance reduction: {(1 – results[‘stability’].mean()):.2%}”)

2.2 Neural Network for Multi-Channel 

Deconvolution The neural approach to estimating minimum-phase signals from multi-channel observations offers significant advantages over traditional methods: 

NEURAL NETWORK ARCHITECTURE FOR MULTI-CHANNEL MINIMUM-PHASE ESTIMATION

This module implements a deep learning approach to estimate clean minimum-phase

signals from corrupted multi-channel observations. The architecture leverages:

  1. Channel-specific encoders to capture unique distortion patterns
  2. Information fusion layers for optimal combination of channels
  3. Custom phase constraint layers to enforce minimum-phase properties
  4. Stability-aware loss functions for financial applications

The design is motivated by the multi-microphone deconvolution problem but

adapted for financial multi-asset scenarios where each “channel” represents

a different but correlated asset observation.

“””

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader, TensorDataset

class MinimumPhaseEstimator(nn.Module):

    “””

    Deep neural network for estimating minimum-phase signals from

    multi-channel corrupted observations in financial markets

    “””

    def init(self, n_channels, signal_length, hidden_dim=256):

        “””

        Initialize the multi-channel minimum-phase estimator

        Args:

            n_channels (int): Number of input channels (correlated assets)

            signal_length (int): Length of time series window

            hidden_dim (int): Hidden layer dimension for feature extraction

        “””

        super(MinimumPhaseEstimator, self).init()

        self.n_channels = n_channels

        self.signal_length = signal_length

        # Individual encoder for each channel to capture channel-specific patterns

        self.channel_encoders = nn.ModuleList([

            nn.Sequential(

                nn.Conv1d(1, 32, kernel_size=7, padding=3),

                nn.ReLU(),

                nn.BatchNorm1d(32),  # Stabilize training

                nn.Conv1d(32, 64, kernel_size=5, padding=2),

                nn.ReLU(),

                nn.BatchNorm1d(64),

                nn.Conv1d(64, 128, kernel_size=3, padding=1),

                nn.ReLU(),

                nn.BatchNorm1d(128)

            ) for _ in range(n_channels)

        ])

        # Fusion layer to optimally combine multi-channel information

        self.fusion = nn.Sequential(

            nn.Conv1d(128 * n_channels, hidden_dim, kernel_size=1),

            nn.ReLU(),

            nn.BatchNorm1d(hidden_dim),

            nn.Dropout(0.1)  # Prevent overfitting

        )

        # Decoder with transpose convolutions for signal reconstruction

        self.decoder = nn.Sequential(

            nn.ConvTranspose1d(hidden_dim, 128, kernel_size=3, padding=1),

            nn.ReLU(),

            nn.BatchNorm1d(128),

            nn.ConvTranspose1d(128, 64, kernel_size=5, padding=2),

            nn.ReLU(),

            nn.BatchNorm1d(64),

            nn.ConvTranspose1d(64, 32, kernel_size=7, padding=3),

            nn.ReLU(),

            nn.BatchNorm1d(32),

            nn.Conv1d(32, 1, kernel_size=1)

        )

        # Custom layer to enforce minimum-phase constraints

        self.phase_constraint = PhaseConstraintLayer()

    def forward(self, multi_channel_input):

        “””

        Forward pass through the network

        Args:

            multi_channel_input (torch.Tensor): Shape (batch, channels, time)

        Returns:

            torch.Tensor: Estimated minimum-phase signal (batch, 1, time)

        “””

        # Process each channel independently to extract features

        encoded_channels = []

        for i, encoder in enumerate(self.channel_encoders):

            channel_data = multi_channel_input[:, i:i+1, :]

            encoded = encoder(channel_data)

            encoded_channels.append(encoded)

        # Concatenate all channel features

        fused = torch.cat(encoded_channels, dim=1)

        # Fuse information across channels

        fused = self.fusion(fused)

        # Decode to reconstruct signal

        reconstructed = self.decoder(fused)

        # Apply minimum-phase constraint

        min_phase_signal = self.phase_constraint(reconstructed)

        return min_phase_signal

class PhaseConstraintLayer(nn.Module):

    “””

    Custom layer that enforces minimum-phase constraints on the output signal

    using differentiable operations suitable for backpropagation

    “””

    def forward(self, x):

        “””

        Apply minimum-phase constraint to input signal

        This layer ensures the output satisfies minimum-phase properties

        by projecting the signal onto the minimum-phase manifold in a

        differentiable manner.

        Args:

            x (torch.Tensor): Input signal (batch, 1, time)

        Returns:

            torch.Tensor: Minimum-phase constrained signal

        “””

        # Transform to frequency domain

        x_fft = torch.fft.rfft(x, dim=-1)

        # Extract magnitude (always non-negative)

        magnitude = torch.abs(x_fft)

        # Compute minimum-phase response from magnitude

        # Using log-magnitude for numerical stability

        log_mag = torch.log(magnitude + 1e-10)

        # Apply causal filter in cepstral domain (approximation for efficiency)

        # This ensures minimum-phase property

        cepstrum = torch.fft.irfft(log_mag, dim=-1)

        # Window to make causal

        batch_size, channels, time_len = cepstrum.shape

        window = torch.zeros_like(cepstrum)

        window[:, :, 0] = 1

        window[:, :, 1:time_len//2] = 2

        # Reconstruct with minimum-phase constraint

        windowed_cepstrum = cepstrum * window

        min_phase_spectrum = torch.exp(torch.fft.rfft(windowed_cepstrum, dim=-1))

        # Combine with original magnitude for stability

        constrained_spectrum = magnitude * torch.exp(1j * torch.angle(min_phase_spectrum))

        # Transform back to time domain

        min_phase_signal = torch.fft.irfft(constrained_spectrum, n=x.shape[-1], dim=-1)

        return min_phase_signal

TRAINING INFRASTRUCTURE FOR FINANCIAL MULTI-ASSET DENOISING

The training loop implements several key innovations for financial data:

  1. Stability-aware loss function that penalizes excessive variations
  2. Multi-scale evaluation for different time horizons
  3. Adaptive learning rate based on validation performance
  4. Special handling of financial data characteristics (fat tails, volatility clustering)

“””

def train_minimum_phase_estimator(model, train_data, val_data, epochs=100):

    “””

    Train the model on financial multi-asset data with stability constraints

    This training procedure is specifically designed for financial applications,

    incorporating domain-specific loss functions and evaluation metrics.

    Args:

        model: MinimumPhaseEstimator instance

        train_data: DataLoader with training samples

        val_data: DataLoader with validation samples

        epochs: Number of training epochs

    “””

    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)

    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=10)

    # Base reconstruction loss

    mse_criterion = nn.MSELoss()

    def stability_aware_loss(pred, target):

        “””

        Custom loss function that combines reconstruction accuracy

        with temporal stability requirements for financial signals

        “””

        # Primary objective: accurate reconstruction

        mse = mse_criterion(pred, target)

        # Secondary objective: temporal smoothness

        # Penalize large variations between consecutive time points

        smoothness = torch.mean(torch.abs(pred[:, :, 1:] – pred[:, :, :-1]))

        # Financial-specific: penalize extreme values (fat tail awareness)

        extreme_penalty = torch.mean(torch.relu(torch.abs(pred) – 3))

        # Weighted combination

        total_loss = mse + 0.1 * smoothness + 0.05 * extreme_penalty

        return total_loss

    best_val_loss = float(‘inf’)

    for epoch in range(epochs):

        # Training phase

        model.train()

        train_loss = 0

        train_batches = 0

        for batch_idx, (data, target) in enumerate(train_data):

            optimizer.zero_grad()

            # Forward pass

            output = model(data)

            # Compute loss

            loss = stability_aware_loss(output, target)

            # Backward pass

            loss.backward()

            # Gradient clipping for stability

            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

            optimizer.step()

            train_loss += loss.item()

            train_batches += 1

        # Validation phase

        model.eval()

        val_loss = 0

        val_batches = 0

        with torch.no_grad():

            for data, target in val_data:

                output = model(data)

                loss = mse_criterion(output, target)  # Use only MSE for validation

                val_loss += loss.item()

                val_batches += 1

        # Calculate epoch metrics

        avg_train_loss = train_loss / train_batches

        avg_val_loss = val_loss / val_batches

        # Learning rate scheduling

        scheduler.step(avg_val_loss)

        # Save best model

        if avg_val_loss < best_val_loss:

            best_val_loss = avg_val_loss

            torch.save(model.state_dict(), ‘best_minimum_phase_model.pth’)

        # Progress reporting

        if epoch % 10 == 0:

            print(f’Epoch {epoch}: Train Loss: {avg_train_loss:.4f}, ‘

                  f’Val Loss: {avg_val_loss:.4f}, ‘

                  f’LR: {optimizer.param_groups[0][“lr”]:.6f}’)

DATA PREPARATION UTILITIES FOR MULTI-ASSET SCENARIOS

These utilities handle the specific challenges of preparing financial data

for neural network training, including:

  • Correlation structure preservation
  • Proper train/test splitting respecting temporal order
  • Normalization appropriate for financial returns
  • Synthetic data generation for testing

“””

def prepare_financial_data(assets, lookback=60):

 “””

    Prepare multi-channel financial data for neural network training

    This function simulates realistic multi-asset scenarios where each asset

    acts as a “noisy channel” observing an underlying factor or signal.

    Args:

        assets: Not used in this simulation, kept for API compatibility

        lookback: Time window size for each training sample

    Returns:

        TensorDataset: PyTorch dataset ready for training

    “””

    # Simulation parameters

    n_samples = 1000

    n_assets = 5

    # Generate true underlying minimum-phase signal

    true_signal = np.random.randn(n_samples)

    processor = MinimumPhaseProcessor()

    true_signal = processor.to_minimum_phase(true_signal)

    # Generate corrupted observations for each asset

    observations = []

    for i in range(n_assets):

        # Asset-specific noise level

        noise_level = 0.1 * (1 + i * 0.05)  # Increasing noise per channel

        noise = np.random.randn(n_samples) * noise_level

        # Asset-specific distortion filter

        # Simulates different market microstructure effects

        filter_cutoff = 0.5 – i * 0.08  # Different frequency responses

        channel_filter = signal.firwin(10, filter_cutoff)

        # Apply convolution (distortion) and add noise

        distorted = signal.convolve(true_signal, channel_filter, mode=’same’)

        observations.append(distorted + noise)

    # Create windowed samples for training

    X = []  # Multi-channel inputs

    y = []  # Clean targets

    for i in range(lookback, n_samples):

        # Extract window from each channel

        window_data = np.array([obs[i-lookback:i] for obs in observations])

        X.append(window_data)

        # Target is the true signal window

        y.append(true_signal[i-lookback:i])

    # Convert to PyTorch tensors

    X = torch.FloatTensor(X)

    y = torch.FloatTensor(y).unsqueeze(1)  # Add channel dimension

    return TensorDataset(X, y)

CONCLUSION – Neural Minimum-Phase Estimation:

This implementation demonstrates how deep learning can be applied to the

classical signal processing problem of minimum-phase estimation, adapted

for financial time series analysis. Key innovations include:

  1. Multi-channel architecture: Leverages correlations between assets
  2. Phase constraint layer: Ensures mathematical properties are preserved
  3. Stability-aware training: Addresses financial data characteristics
  4. Modular design: Easy to extend for different asset classes

Future enhancements could include:

  • Attention mechanisms for dynamic channel weighting
  • Adversarial training for robustness
  • Online learning capabilities for real-time adaptation

3. Style Miner: Constrained Reinforcement Learning for Finance


3.1 Complete System Architecture

“””
STYLE MINER: CONSTRAINED REINFORCEMENT LEARNING FOR DYNAMIC FACTOR SELECTION
 

This comprehensive implementation provides a production-ready framework for
discovering and maintaining stable financial style factors using constrained
reinforcement learning. The system addresses key challenges in quantitative
finance:

4. Dynamic factor selection in changing market conditions

5.   Balancing factor significance with temporal stability

6. Managing transaction costs and portfolio turnover

7. Incorporating risk constraints via Lagrangian relaxation

LEAVE A REPLY

Please enter your comment!
Please enter your name here